Antioxidant response and Lea genes expression under salt stress and combined salt plus water stress in two wheat cultivars contrasting in drought tolerance.

نویسندگان

  • Priyanka Bhagi
  • Vikramjit Kaur Zhawar
  • Anil Kumar Gupta
چکیده

Two wheat cultivars, C306 and PBW343 contrasting in drought tolerance were compared for their antioxidant response and Lea genes' expression under salt stress (SS) and combined stress (CS) of salt stress plus water stress during seedlings growth. The drought susceptible cultivar (PBW343) behaved different towards SS/CS than towards WS. It accumulated more dry masses in shoots, more ascorbate, had higher ascorbate to dehydroascorbate ratio, lesser dehydroascorbate, lesser malondialdehyde (MDA), more proline and higher antioxidant enzymes under SS than under WS. CS increased dry masses, ascorbate, ascorbate to dehydroascorbate ratio, antioxidant enzymes and decreased dehydroascorbate and MDA contents from levels under WS. The drought tolerant cultivar (C306) though showed higher levels of ascorbate, ascorbate to dehydroascorbate ratio, lower levels of dehydroascorbate, showed lesser dry biomasses in shoots, higher MDA and lesser ascorbate peroxidase and catalase activities under SS than under WS and these features were improved on combining WS with SS. All lea genes were induced under all stresses in both cultivars except Wrab17 in C306 only, was not induced under any stress. Eight Lea genes out of ten were induced higher under WS than SS in C306 but induced same in PBW343. Wdhn13 gene was higher salt-responsive than other lea genes in both cultivars.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress

Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...

متن کامل

Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress

The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signal...

متن کامل

Effect of salinity stress and application of salisylic acid on expression of TaSC and TaNIP genes in two bread wheat (Triticum aestivum L.) cultivars

Salinity is one of the environmental stresses that affects bread wheat grain yield in most parts of the world. One of the basic strategies to mitgiate the effect of non-biological stresses such as salinity is genetic improvement of crop plants. Identification of stress-associated genes is a prerequisite for genetic improvement. In the present study, the role of a number of genes in the aquapori...

متن کامل

Effects of External Potassium (K) Supply on Drought Tolerances of Two Contrasting Winter Wheat Cultivars

BACKGROUND Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. METHODOLOGY/PRINCIPAL FINDINGS...

متن کامل

Assessment of agro-physiological traits for salt tolerance in drought-tolerant wheat genotypes

Salt stress is one of the major constraints for wheat cultivation inIranand leads to a considerable loss in crop yield each year. In high salinity soils, the reduced osmotic potential of soil solutes may cause physiological drought. In this study the salt tolerance of different drought-tolerant bread wheat genotypes were studied by examining various agronomic and physiological traits, inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Indian journal of experimental biology

دوره 51 9  شماره 

صفحات  -

تاریخ انتشار 2013